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Abstract
Most existing heterogeneous transfer learning (HTL)
methods for cross-language text classification rely on
sufficient cross-domain instance correspondences to
learn a mapping across heterogeneous feature spaces,
and assume that such correspondences are given in ad-
vance. However, in practice, correspondences between
domains are usually unknown. In this case, extensively
manual efforts are required to establish accurate cor-
respondences across multilingual documents based on
their content and meta-information. In this paper, we
present a general framework to integrate active learning
to construct correspondences between heterogeneous
domains for HTL, namely HTL through active corre-
spondences construction (HTLA). Based on this frame-
work, we develop a new HTL method. On top of the new
HTL method, we further propose a strategy to actively
construct correspondences between domains. Extensive
experiments are conducted on various multilingual text
classification tasks to verify the effectiveness of HTLA.

Introduction
In natural language processing, how to exploit knowledge
in a source-language domain with sufficient labeled docu-
ments to assist text mining in a target-language domain with
limited annotated documents is crucial. Recently, heteroge-
neous transfer learning (HTL) has been proposed to solve
this problem (Duan, Xu, and Tsang 2012; Xiao and Guo
2013; Zhou et al. 2014a). One of the critical issues in HTL
is how to learn a mapping between heterogeneous feature
spaces of the source and target domains. Most existing HTL
approaches assume that sufficient instance-correspondences
are given in advance to learn such a feature mapping (Xiao
and Guo 2013; Zhou et al. 2014a). However, in practice,
instance-correspondences between domains are usually un-
known. Therefore, extensively manual efforts are required to
establish accurate correspondences across multilingual doc-
uments based on their content and meta-information.

For instance, given a task on topic categorization for
scanned books in a minor language such as German or Viet-
namese, there may be few annotated books available because
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Figure 1: Illustration of Motivation

manually constructing a precise hierarchy of categories is
expensive, especially for a minor language. In contrast, there
are plenty of annotated books in a major language, such as
English. Intuitively, one can apply HTL techniques to trans-
fer annotation information from a major language to a mi-
nor language for book categorization. This usually requires
a sufficient set of correspondences between languages as
inputs. However, due to the optical character recognition
(OCR) error caused by converting the scanned books into
editable data, simply machine/human translation on book ti-
tles fails to construct precise book correspondences between
languages. For example, as shown in Figure 1(a), the book
in German entitled “Künstliche Intelligenz” turns into un-
recognized text “K¨unstiiche mtelligonz” by an OCR reader.
Such error may induce ambiguity when constructing cross-
language correspondences shown in Figure 1(b). The Ger-
man book named “Künstliche Intelligenz” after OCR scan-
ning and conversing can correspond to either the book “Arti-
ficial Intelligence” (“Künstliche Intelligenz” in German) or
the book “Artistic Director” (“Künstlerisch Intelligenzia” in
German) in English. In this case, extensive human efforts are
required to construct the precise correspondences based on
the content and meta information of the books.

Inspired by the idea of active learning (Settles 2010), to
reduce the cost of constructing correspondences between



domains for HTL, one can actively construct most “infor-
mative” and “high-quality” correspondences with limited
budget for effective knowledge transfer across domains. In
this paper, we propose a novel and general HTL frame-
work named Heterogeneous Transfer Learning through Ac-
tive correspondence construction (HTLA) to address the
problem. In summary, our contributions are two folds:

• We present a novel framework to actively construct corre-
spondences between heterogeneous domains for effective
knowledge transfer.

• We present a new correspondence-based method for HTL
through matrix completion with a regularization term on
distribution matching. The encoding of the regularization
into matrix completion significantly improves the predic-
tion performance of HTL, but introduces additional chal-
lenges in optimization. We propose an effective approach
to solve the optimization problem.

Related Work
Different from homogeneous transfer learning, which aims
to transfer knowledge across domains that are of homoge-
neous features (Pan and Yang 2010; Daumé III 2007), het-
erogeneous transfer learning (HTL) is proposed for hetero-
geneous domains with non-overlapping features. Most exist-
ing HTL methods focus on two settings. One assumes a few
target-domain labeled data be available in training (Kulis,
Saenko, and Darrell 2011; Duan, Xu, and Tsang 2012;
Wang and Mahadevan 2011; Zhou et al. 2014b), while the
other assumes sufficient instance-correspondences between
heterogeneous domains be available. In the latter setting,
which is our focus, Dai et al. (2008) proposed a probabilis-
tic model to construct a “translator” to build connections
between instances from different domains. Recently, Xiao
and Guo (2013) applied an existing matrix completion tech-
nique to HTL. Specifically, in their proposed method, some
instance-correspondences between domains are assumed to
be given in advance, and the goal is to reconstruct “miss-
ing correspondences” for all the instances observed in ei-
ther the source or target domain. However, their proposed
method does not consider distribution distance between do-
mains when reconstructing the corresponding instances. In
this paper, we propose a more general matrix completion
method for HTL by taking distribution distance minimiza-
tion into consideration. Moreover, we propose a framework
to actively construct instance-correspondences for HTL.

There has been research work on combining active learn-
ing and transfer learning to actively query instances for la-
bels in the target domain by leveraging knowledge from the
source domain (Shi, Fan, and Ren 2008; Rai et al. 2010;
Chattopadhyay et al. 2013; Wang, Huang, and Schneider
2014). However, most of them are focused on homogeneous
transfer learning. The most related work to ours on actively
constructing correspondences between heterogeneous do-
mains for knowledge transfer is (Zhao et al. 2013), where an
active learning strategy was proposed to selectively identify
user/item correspondences between different recommender
systems. However, their proposed method is specific for col-
laborative filtering in recommender systems, which is not

easy to generalize to other HTL problems. Our proposed al-
gorithm is general for cross-language text classification.

Problem Statement and Formulation
Assume that we are given a set of source-domain labeled
instances, {(xSi , ySi)}li=1, where xSi ∈ RdS×1 denotes an
instance and ySi ∈ {1,−1} denotes the corresponding la-
bel, a set of source-domain unlabeled instances {xSi}

nS

i=l+1,
and a set of corresponding pairs between the source and
target domains, {(xC

Si
,xC

Ti
)}nC

i=1, where xC
Si
∈ RdS×1 and

xC
Ti
∈ RdT×1 are source- and target- domain instances re-

spectively. Note that nC can be 0 initially. The goal is to
make predictions on another set of target-domain unlabeled
instances {xTi

}nT
i=1. For simplicity, the matrices of source-

domain labeled, unlabeled, and all instances are denoted by
XSL ∈ Rl×dS , XSU ∈ R(nS−l)×dS and XSA ∈ RnS×dS ,
respectively, where each row corresponds an instance. Sim-
ilarly, the matrix of target-domain unlabeled instances is de-
noted by XT ∈ RnT×dT , and the corresponding instances
in the source and target domains are denoted by XSC ∈
RnC×dS and XTC ∈RnC×dT respectively.

As our proposed method is based on matrix completion,
we first construct a unified instance-feature matrix for all the
instances from the source and target domains as follows,

M =

[
XS

XT

]
=

 XSA

XSC

XT

 =

[
XSA 0nS ,dT

XSC XTC

0nT ,dS
XT

]
, (1)

where XS =
[
X
>
SA X

>
SC

]>
, and the matrices 0nS ,dT

and
0nT ,dS

denote the missing correspondences of XSA and XT

in the target domain and the source domain, respectively. We
further define n′S = nS + nC .

We aim to recover the missing entries in M to obtain
the “ground-truth” matrix X. Based on this matrix, we fur-
ther apply a singular value decomposition (SVD) on X to
project both the source and target domain data to a com-
mon latent space spanned by the top r singular vectors, i.e.,
X = UrΣrVr, and let Z = XVr. Finally we train a classi-
fier on the first l rows of Z, i.e., the new feature representa-
tions of the source-domain labeled data, and test on the last
nT rows of Z, i.e., the new feature representations of the
target-domain test data.

Matrix Completion for HTL
Recall that given partially observed cross-domain instances-
feature matrix M, we seek to estimate the missing values of
the matrices 0nS ,dT

and 0nT ,dS
(i.e., to estimate the missing

correspondences of XSA and XT in the target domain and
the source domain respectively) by recovering the ground-
truth matrix X that fulfills the following properties:
• X is sparse. Motivated by a number of applications, such

as cross-language text categorization, a feature represen-
tation for an instance is sparse. Thus, the L1 norm ‖ · ‖1
can be used to encourage sparsity.

• X is low rank. In many applications, high dimensional
data are controlled by a few latent factors. Thus, the nu-
clear norm ‖ · ‖∗ can be used to regularize its rank.



The HTL problem can then be transformed into a standard
matrix completion (MC) problem (Xiao and Guo 2013) as,

min
X

1

2
‖(X−M) ◦P‖2F + γ‖X‖∗ + µ‖X‖1 (2)

where M is an observed matrix, P is an indicator matrix
with Pij = 1 if (i, j) is observed, otherwise 0, the operator
◦ is the Hadamard product, and γ, µ are tradeoff parameters
for the nuclear norm ‖·‖∗ and theL1 norm ‖·‖1, respectively.

Maximum Mean Discrepancy
Maximum Mean Discrepancy (MMD) (Borgwardt et al.
2006) is a nonparametric measure to estimate the distance
between distributions, which is expressed as follows

Dist(XS ,XT )=

∥∥∥∥ 1

n′S

∑
φ(xSi

)− 1

nT

∑
φ(xTj

)

∥∥∥∥2
H

, (3)

where φ(·) is a feature mapping to a Hilbert space. It can be
rewritten in a more compact form:

Dist(DS ,DT ) = tr(KXL), (4)

where KX =

(
KXS,S

KXS,T

KXT,S
KXT,T

)
, which is a kernel matrix

induced by the feature mapping function φ(·), and L =(
LS,S LS,T

LT,S LT,T

)
, where Lij =1/(n′S)

2 if xi,xj ∈XS , Lij =

1/(nT )
2 if xi,xj∈XT , otherwise Lij = −1/(n′SnT ).

Distribution Matching based Matrix Completion
The proposed optimization problem, Distribution Matching
based Matrix Completion (DMMC), is expressed as follows:

min
X∈K

F (X) =
1

2
‖(X−M) ◦P‖2F + γ‖X‖∗ + µ‖X‖1

s.t. K = {X|tr(KXL) < λ} , (5)

where λ is a constant to constrain the distance between
the source and target domain data, XS and XT , measured
by MMD. Note that the difference between (5) and (2) is
the additional constraint based on MMD. As shown in ex-
periments, by adding the MMD-based constraint, one can
achieve much better performance on HTL problems. This
is because the MMD-based regularization term captures the
information on distribution difference. In contrast, the rank
and sparsity constraints fail to capture such information. For
example, a block diagonal matrix satisfies both low rank and
sparsity constraints. However, such recovered matrix is not
useful for HTL problems since it fails to recover the missing
correspondences. Note that obtaining the solution of the op-
timization problem (5) is nontrivial because the additional
MMD-based regularization makes the problem much more
difficult to solve. Specifically, by adding the MMD-based
regularization, the optimization problem (5) is nonconvex,
which cannot be solved by any existing MC algorithms such
as singular value thresholding (SVT) (Cai, Candès, and Shen
2010). Therefore, a new approach needs to be developed,
which is discussed in the next section.

HTL through Active Correspondences
Construction

In this section, we present the overall framework of Hetero-
geneous Transfer Learning through Active correspondences
construction (HTLA) as described in Algorithm 1. To be-
gin with, we randomly construct several correspondences,
which are denoted by a set C(1), to form the matrix M in (1),
and apply the proposed HTL method DMMC to recover an
initial X. After that, we iteratively construct cross-domain
correspondences by updating the set C(t), where t is an in-
dex of each iteration, based on the proposed active corre-
spondences construction strategy ActiveLearn(·), and reap-
ply DMMC to recover a more precise X with the updated
C(t+1) until a stopping criterion is met. In the following sec-
tions, we introduce the DMMC method and the strategy of
active correspondences construction in detail.

Algorithm 1 Framework of HTLA
Initializations: Randomly construct k correspondences
C(1) to form the matrix M, and set X(1) = M.
for t = 1, 2, ..., T do

1: X(t+1) = DMMC(X(t)).
2: Set C(t+1) = ActiveLearn (X(t),C(t)).
3: Update X(t+1) based on C(t+1), and set t← t+ 1.

end for
Return: X← X(T+1)

Recover low-dimensional representations: apply a
SVD on X, X = UrΣrVr, and use the top r singular
vectors to construct a projection, Z = XVr.

Optimization for DMMC
In this section, we propose an efficient algorithm to solve the
optimization problem (5) based on stochastic sub-gradient
descent (SSGD) with projection on the feasible space K.
The reason that we adopt SSGD is its desirable advan-
tages for large-scale optimization problems (Bottou 2010;
Avron et al. 2012). Moreover, its promising results on non-
linear optimization problems have been shown by other re-
searchers (Wang, Crammer, and Vucetic 2012). Specifically,
our proposed approach consists of two parts: 1) SSGD for
MC, and 2) projection onto K.

SSGD for MC The sub-gradient of F (X) in (5) w.r.t X
can be written as

G(F (X)) = γ
∂‖X‖∗
∂X

+ µ
∂‖X‖1
∂X

+ (X−M) ◦P, (6)

where ∂‖X‖∗
∂X = UV> + H, and UΣV is a compact SVD

of X.1
Efficient and Unbiased Sub-gradient Estimation: The
success of SSGD relies on the unbiased estimation of the
sub-gradient estimation. Avron et al. (2012) proposed to use
a probing matrix to sparsify the sub-gradient estimation such
that E(g̃) = g. The probing matrix is defined as follows,

1We can simply set H to be the zero matrix (Watson 1992) and
∂‖X‖1
∂Xi,j

=sign(Xij) when Xij 6=0, otherwise ∂‖X‖1
∂Xi,j

=θ∈ [−1, 1].



Definition 1. Probing Matrix: A random d × p matrix Y
with p < d is a probing matrix if E[YY>] = Id×d, where
Id×d is the identity matrix, and E is the expectation operator.

We can randomly sample p vectors from the scaled stan-
dard basis {

√
de1, · · · ,

√
ded} to form the probing matrix:

Y = [
√
de1, · · · ,

√
dep]/

√
p. Therefore, we only need to

sample p column vectors from the d columns of a n × d
matrix X. As the main time complexity for MC depends on
performing a SVD on the matrix, i.e.,O(9d3+8nd2+4n2d),
where d = dS+dT and n = n′S+nT . Compared to the algo-
rithm used in Xiao and Guo (2013), which performs a SVD
on the whole matrix, our proposed method only performs
SVD on a submatrix of the original matrix. Therefore, the
time complexity is reduced to O(9p3 + 8np2 + 4n2p). Es-
pecially, when data are of very high dimensions, p� d, our
proposed approach is much more efficient. Besides, SSGD
with unbiased sub-gradient estimation converges in O(d/p)
iterations (Theorem 2.3 (Avron et al. 2012)). To avoid addi-
tional parameters, we set p of the probing matrix the same as
the reduced dimension r as suggested by Avron et al. (2012).

Projection to K-space After one step of sub-gradient de-
scent, the recovered X may be out of the feasible set K. In
other words, the distributions of the recovered source- and
target- domain data may be very different, which may make
cross-domain knowledge transfer unsuccessful. Therefore,
the projection on the K-space is required. The operator of
K-space projection for any matrix X is defined as follows∏

K

(X) = arg min
X̂∈K

h(X̂), (7)

where h(X̂) = 1
2‖X̂−X‖2F . The optimization problem (7)

is equivalent to the following problem:

min
X̂

h(X̂) =
1

2
‖X̂−X‖2F + λtr(KX̂L), (8)

where we use λ as the parameter of the MMD-based term
for simplicity in presentation. Though (8) is nonconvex due
to some negative terms in L, it can be formulated as the
difference of convex program, which can be solved by the
concave-convex procedure (CCCP) with global convergence
guarantee (Sriperumbudur and Lanckriet 2009) to the mini-
mum or stationary point if the objective function is smooth.
To apply CCCP to solve the problem, we rewrite (8) as

min
X̂

h(X̂) =
1

2
‖X̂−X‖2F +λ

(
tr(KX̂L+)−tr(KX̂L−)

)
,

= u(X̂)− v(X̂), (9)

where L+ =

(
LS,S 0

0 LT,T

)
, L− =

(
0 −LS,T

−LT,S 0

)
,

u(X̂)=1
2‖X̂−X‖2F+λtr(KX̂L+), and v(X̂)=λtr(KX̂L−).

In general, CCCP solves problems of the following form,
min
d
u(d)− v(d). (10)

If v(d) is smooth, then the updates of d can be achieved by
the majorization-minimization algorithm (Sriperumbudur
and Lanckriet 2009) as follows:

d(l+1) ← argmin
d
u(d)− d>Ov(d(l)). (11)

However all the existing CCCP solvers are based on the
assumption that d ∈ Rd. Here we extend CCCP in a matrix-
form manner as follows,

X(l+1) ← argmin
X

u(X)− tr(Ov(X(l))>X). (12)

By substituting (12) into (9), we obtain

X̂(l+1)

←argmin
X̂

1
2
‖X̂−X‖2F +λtr(KX̂L+)−λtr(5v(X̂(l))>X̂).(13)

Note that (13) is convex, whose global optimal solution
can be achieved by performing gradient descent approaches.
CCCP can always generate the sequence of X monotoni-
cally converging to the stationary point or minimum of the
objective function if both u(X) and v(X) are convex and
differentiable (Sriperumbudur and Lanckriet 2009). For ap-
plications with nonnegative feature values, we can simply
use the projected gradient descent algorithm to project the
solution into the nonnegative space. The pseudo code of
DMMC is presented in Algorithm 2.

Algorithm 2 SSGD for DMMC
Input: Instance-feature matrix M, trade-off parameters
γ, λ, µ, maximum iteration K, upper bound of rank r.
Initializations: t = 0, X(t) the initial rank-r approxima-
tion of M, and stepsize η.
while t ≤ K do

1: Generate an d× p probing matrix Y(t)

2: Sub-gradient: g ← G(F (X(t)))Y(t)(Y(t))>

3: Projection: X̂(t) ←
∏

K(X(t) − ηg)
4: X(t+1) = X̂(t), and t← t+ 1.

end while
Output: X = X(K+1)

Active Correspondences Construction
In the previous section, we have described a new HTL
method, DMMC, where a set of correspondences between
domains are given. In this section, we present a strategy to
actively select a batch of the most informative instances in
the source domain to query their correspondences in the tar-
get domain based on DMMC. The motivation is that in ma-
trix completion, some recovered “target-domain instances”
based on the corresponding source-domain instances may
not be precise, resulting in large distance in distributions
between domains. Therefore, such corresponding instances
need to be manually constructed. To be specific, the distance
in distributions between the recovered source- and target-
domain data, XS and XT , is formulated as follows,

min
α

∥∥∥∥∥∥ 1

n′S−k

 ∑
xi∈XSLC

ϕ(xi)+
∑

xi∈XSU

αiϕ(xi)

− 1

nT

∑
xi∈XT

ϕ(xi)

∥∥∥∥∥∥
2

H

,

s.t. αi ∈ {0, 1}, α>1 = nS − l − k, (14)

where n′S = nS +nC , XSLC =
[
X
>
SL X

>
SC

]>
, k is the

size of correspondences to be constructed in each iteration,



and α is the indicator vector for source-domain unlabeled
instances. If the instance i is selected, then αi = 1, which
implies that the corresponding recovered target-domain in-
stance does not make the distance in distributions between
domains large. Otherwise αi=0, which implies that the cor-
responding recovered target-domain instance makes the dis-
tributions between domains very different.

Note that (14) is NP-hard due to the integer constraints.
We thus propose to further relax the problem into the fol-
lowing convex problem (Chattopadhyay et al. 2013; Gong,
Grauman, and Sha 2013):

min
α∈[0 1]

1

2
α>KXSU

α− n
′
S−k
nT

k>XSU ,XT
α+k>XSU ,XSLC

α, (15)

where KXSU
is the kernel matrix on XSU ,

kXSU ,XT
(i) =

∑
j KXSU ,XT

(i, j), and kXSU ,XSLC
(i) =∑

j KXSU ,XSLC
(i, j). After solving (15), we sort the

{αi}’s in ascending order and select the top k correspond-
ing xSi

∈ XSU for querying their corresponding instances
in the target domain. The overall active correspondences
construction procedure is presented in Algorithm 3.

Algorithm 3 Active Correspondences Construction

Input: X(t), a set of correspondences C(t) after t itera-
tions, and size k .
1: Compute α for xSi

∈ XSU based on (15).
2: Select CS ⊆ XSU of size k whose corresponding
{xSi
}’s are of smallest {αi}’s values to query their corre-

sponding target-domain instances to form Ck.
3: Update C(t+1) = C(t) ∪ Ck, and XSU = XSU \ CS .
Output: C(t+1).

Experimental Results
We verify the effectiveness of HTLA by conducting experi-
ments on two cross-language text classification datasets.

Experimental Setup
Sentiment Analysis: The cross-language sentiment classi-
fication dataset (Prettenhofer and Stein 2010) comprises of
Amazon product reviews of three product categories: books
(B), DVDs (D) and music (M). These reviews are written in
four languages: English (EN), German (GE), French (FR),
and Japanese (JP). For each category, reviews are split into
a training set and a test set, including 2,000 reviews re-
spectively. For each non-English language, there are another
2,000 unlabeled correspondences (English v.s. non-English).
Each review is preprocessed using TF-IDF.
Topic Categorization: The multilingual Reuters collection
is a text dataset with up to 5,000 news articles from 6 topics
(i.e., C15, CCAT, E21, ECAT, GCAT and M11) in five lan-
guages, i.e., English (EN), French (FR), German (GE), Ital-
ian (IT) and Spanish (SP), which are represented by a bag-
of-words weighted by TF-IDF. Each document has trans-
lations in the other four languages. As in practice, English
documents are widely accessible, we take English as the
source domain, and each of the other languages as a target

domain, respectively. The performance of all methods are
evaluated on the target-domain unlabeled data without any
target-domain labeled training data.
Experimental Design: We conduct three sets of experi-
ments to evaluate the performance of our proposed frame-
work for HTL. The first experiment compares DMMC with
other HTL methods when a set of cross-domain correspon-
dences are given. The second experiment compares the per-
formance of our proposed active strategy with random se-
lection for cross-domain correspondences construction. The
third experiment studies the sensitivity of the parameters in
our proposed framework.
Baselines: We compared our proposed DMMC for HTL
with the following state-of-the-art baselines.
1) SVM-SC: We first train a classifier on the source-domain
labeled data, and then use it to make predictions on the
source-domain corresponding data. In this way, the pre-
dicted labels on the source-domain corresponding data can
be transferred to their correspondences, i.e., translations, in
the target domain .
2) OPCA: We first apply Oriented Principal Component
Analysis (OPCA) (Platt, Toutanova, and Yih 2010) to learn
projections for the source and target domain data. A classi-
fier is trained and tested on the projected data.
3) LSI: We first apply Latent Semantic Indexing (LSI) (Nie
et al. 1999) on the matrix M to learn low-dimensional cross-
lingual representations, and then train and test a classifier on
the low-dimensional data.
4) KCCA: We first apply Kernel Canonical Component
Analysis (KCCA) (Vinokourov, Shawe-Taylor, and Cristian-
ini 2002) on the cross-domain correspondences to learn pro-
jections for bilingual data, and then train and test a classifier
on the projected data.
5) TSL: We apply the correspondence-based HTL method
proposed by Xiao and Guo (2013) to train a classifier to pre-
dict the unlabeled data in the target domain.
Parameter Settings: For DMMC, there are three tradeoff
parameters, γ, µ, and λ, on the regularization terms on low-
rank, sparsity, and distance matching, respectively. We val-
idate the parameters as follows: γ ∈ {10−2, 10−1, ..., 102},
µ∈ {10−6, 10−5, ..., 10−1}, and λ∈ {10−3, 10−2, ..., 101}.
For the parameter setting of TSL, we follow the proce-
dure in (Xiao and Guo 2013). We first set µ = 10−6 and
τ=1, and then cross validate γ∈{10−3, 10−2, ..., 101}, and
ρ∈{10−6, 10−5, ..., 10−1}. For KCCA, we tune the param-
eter κ in (5) in (Vinokourov, Shawe-Taylor, and Cristianini
2002) in the range of {10−2, 10−1, ..., 102}. For the reduced
dimensions for OPCA, LSI, KCCA, TSL and DMMC, we
validate in the same range of r∈{20, 50, 100, 200, 500}. For
all experiments, we employ linear support vector machines
(SVMs) (Chang and Lin 2011) with default parameter set-
tings as the base classifier.

Overall Comparison Results
In the first experiment, we compare the performance in terms
of classification accuracy of different methods given all the
available cross-domain correspondences in the datasets. The
overall results are shown in Table 1 and 2. We can see that
DMMC outperforms all the baselines. SVM-SC performs



Table 1: Sentiment analysis in classification accuracy (%).
TASK SVM-SC OPCA KCCA LSI TSL DMMC
B-FR 72.35 68.70 69.75 71.56 73.95 76.52
D-FR 74.50 65.45 72.55 71.22 74.30 76.23
M-FR 67.40 67.95 70.17 67.39 71.15 74.05
B-GE 74.12 69.00 73.69 72.43 75.98 77.47
D-GE 73.75 71.63 74.79 74.76 76.01 78.28
M-GE 73.25 65.12 69.86 72.18 74.57 76.60
B-JP 60.83 58.69 62.02 62.22 65.81 68.54
D-JP 69.36 66.60 66.17 66.47 70.72 72.12
M-JP 65.59 64.40 63.80 65.54 68.22 71.37

Table 2: Topic categorization in classification accuracy (%).
TASK SVM-SC OPCA KCCA LSI TSL DMMC

FR 63.77 58.70 63.41 61.77 63.18 65.52
GE 47.59 53.18 55.71 54.48 56.08 58.23
IT 49.23 52.95 56.17 55.39 57.15 60.76
SP 53.63 55.00 56.69 55.53 56.98 62.64

slightly better than OPCA, LSI and KCCA on average due to
the sufficient set of cross-domain correspondences. LSI per-
forms poorly without filling the missing values via matrix
completion. Therefore, matrix completion is necessary be-
fore dimensionality reduction. DMMC explicitly minimizes
the distance in distributions of the recovered data between
domains. This improves classification accuracy by around
3% over TSL with all the available correspondences. To
further analyze the effect of the MMD-based regularization
term, we show how the accuracy varies with different corre-
spondence sizes for TSL and DMMC in Figure 2. DMMC
outperforms TSL significantly by around 5% in terms of ac-
curacy, especially when the correspondence size is small.

Experiments on Active Correspondences
In the second experiment, we aim to verify the effectiveness
of the proposed active learning strategy for cross-domain
correspondences construction. We denote by DMMC-active
and DMMC-rand the DMMC method with active and ran-
dom correspondences construction strategies, respectively.
We set k=100, and show the comparison results in Figure 3,
where averaged results of each language over 10 runs are
reported. We observe that DMMC-active consistently and
significantly outperforms DMMC-rand on all the tasks es-
pecially when the correspondence size is small. Moreover,
DMMC-active performs more stable than DMMC-rand be-
cause DMMC-active aims to choose the most informative
correspondences to update the model in each iteration.

Parameter Analysis
For the final experiment, we study the sensitivity of the three
parameters, γ, µ, and λ, in DMMC. In this experiment2, we
fix the correspondences size nc=2, 000 and report averaged
results of each non-English language as the target domain in
Figure 4. In Figure 4(a), we show the classification accuracy
when varies γ in the range [10−2 102] by fixing µ = 10−4

and λ=10−2. From the figure, we observe that classification

2We use sentiment dataset as a showcase due to page limit.
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Figure 2: TSL v.s. DMMC.
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Figure 3: Active Correspondences Construction.

accuracy drops fast when γ becomes small (≤ 1). This im-
plies that the low-rank regularization is important because
documents are represented by only a few latent topics. In
Figure 4(b), we vary µ in the range [10−6 10−1] by fixing
γ=10, and λ=10−2 . We see that if µ is set to a large value,
then the model may overfit to the observed nonzero entries,
and lead to many recovered entries to be zero values. In Fig-
ure 4(c), we show classification accuracy under different λ
in the range [10−3 101] by fixing γ=10, and µ=10−4. The
figure shows that the parameter λ should be neither too large
nor too small to reach satisfactory performance.

Conclusion
In this paper, we propose a general framework named
HTL through active correspondences construction (HTLA).
Different from previous work that assumed a sufficient
set of cross-domain correspondences be given in advance,
we propose to actively construct cross-domain correspon-
dences. Under the framework, we first propose a general
correspondence-based HTL method through matrix comple-
tion with a distribution matching regularizer. Based on this
method, we propose an active learning strategy to query
construction of correspondences. Extensive experiments on
two benchmark datasets on multi-language text classifica-
tion demonstrate the superiority of the proposed method
over a number of state-of-the-art baseline methods.
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